Utilizamos cookies propias y de terceros para mejorar la navegación y ofrecer contenidos de interés.

Al continuar, entendemos que acepta nuestra Política de Cookies. Puede modificar las opciones de almacenamiento de cookies en su navegador. Saber más

Acepto

Filtros Activos: la calidad de red más versátil


Las cargas domésticas e industriales contienen cada vez más circuitos electrónicos que se alimentan de corriente que no es senoidal pura. Así por ejemplo, los motores utilizan cada vez más la regulación de frecuencia, que requiere un paso de corriente alterna (CA) a corriente continua (CC) y luego de CC a CA. Dado que el suministro habitual es en CA, esto implica un uso cada vez más intensivo de convertidores electrónicos (rectificadores, onduladores, etc.) para realizar estas transformaciones CC-CA y CA-CC. Lo mismo sucede con cargas tan habituales como ordenadores, alumbrado LED y de descarga, ascensores…

Desde el punto de vista de la red eléctrica, esto se traduce en que ésta debe alimentar un gran número de cargas que rectifican la corriente y por ello, la forma de onda de la corriente que consumen resulta alterada, de forma que ya no es una onda senoidal, sino una superposición de ondas senoidales con frecuencias múltiplos de la frecuencia de red (armónicos). Las figuras 1 y 2 muestran el consumo típico de una red con rectificadores monofásicos y otra con rectificadores trifásicos. Este tipo de corrientes son las más abundantes en instalaciones como oficinas, centros comerciales, hospitales… y están formadas por una componente de 50 ó 60Hz (frecuencia fundamental de la red) y una serie de componentes de frecuencias múltiplos en distintos porcentajes. Estos porcentajes pueden medirse mediante un analizador de armónicos, así como la tasa de distorsión total, THD, que da la relación entre el valor eficaz del rizado y el eficaz de la componente fundamental. 

FA-red-mono FA-red-tri
 a) Red monofásica  b) Red trifásica

Fig. 1 .- Formas de onda típicas de redes distorsionadas

La consecuencia de los consumos no senoidales es que la tensión sufre también una cierta distorsión, debido a las caídas de tensión en las impedancias de líneas y transformadores. En los registros puede observarse una leve distorsión de la tensión en la red monofásica (THD bajo) y una distorsión más fuerte en el ejemplo trifásico. En ambos casos la corriente tiene formas muy distintas de la senoidal con valores de THD más altos.

Para regular el tema y limitar los niveles de distorsión de tensión en los puntos de enlace de los abonados a la red pública, existen una serie de normas internacionales que establecen límites de emisión de armónicos para los equipos y sistemas que deban conectarse a la red (Tabla 1), las más importantes son las y la relativa a niveles de compatibilidad:

Tabla 1.- Normas internacionales sobre límites de emisión de armónicos

Norma Descripción 
 IEC-61000-2-2 Compatibilidad electromagnética (CEM). Parte 2-2: Entorno. Niveles de compatibilidad para las perturbaciones conducidas de baja frecuencia y la transmisión de señales en las redes de suministro público en baja tensión.
 IEC-61000-2-4 Compatibilidad electromagnética (CEM). Parte 2-4: Entorno. Niveles de compatibilidad para las perturbaciones conducidas de baja frecuencia en las instalaciones industriales.
 IEC-61000-3-2 Compatibilidad electromagnética (CEM). Parte 3-2: Límites. Límites para las emisiones de corriente armónica (equipos con corriente de entrada <= 16 A por fase)
IEC-61000-3-4 Compatibilidad electromagnética (CEM). Parte 3-4: Límites. Limitación de las emisiones de corrientes armónicas en las redes de baja tensión para equipos con corriente asignada superior a 16 A.
IEC-61000-3-12 Compatibilidad electromagnética (CEM). Parte 3-12: Límites para las corrientes armónicas producidas por los equipos conectados a las redes públicas de baja tensión con corriente de entrada > 16 A y <= 75 A por fase.
IEEE-519-2014 IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems
G5/4-1  

Algunos conceptos clave sobre armónicos

Podemos comprender mejor los problemas de armónicos basándonos en algunos conceptos básicos, que han sido publicados en numerosos artículos y libros y que resumimos a continuación:

  1. El origen de los problemas de armónicos son los receptores que consumen corrientes distorsionadas (receptores denominados "no lineales")
  2. La propagación del problema a otros usuarios conectados a la misma red depende de la impedancia de dicha red y esto depende de la compañía distribuidora. Esta impedancia no suele darse directamente, pero puede calcularse a partir de la potencia de cortocircuito disponible (a más potencia de cortocircuito menor impedancia),
  3. El propio usuario tiene una parte de la red de distribución hasta llegar a la carga final. Así pues el problema que pueda tener a la entrada de su instalación puede ser atribuido a falta de potencia de cortocircuito, pero en muchos casos el problema que pueda tener en puntos alejados de la acometida, suele ser a causa de las impedancias de su propia instalación
  4. Abundando en el tema de la distorsión en puntos alejados de la acometida, hay que tener en cuenta que la impedancia de las líneas tiene una componente inductiva muy importante. Por tanto no se trata muchas veces de distribuir con cables de sección muy grande, sino de limitar la inductancia por metro de los cables, y esto se consigue trenzando y retorciendo los cables de distribución (algo muchas veces rechazado por los instaladores por la falta de estética que representa)
  5. El problema de distorsión de la tensión en el punto PCC puede agravarse debido a resonancias entre los condensadores de compensación del factor de potencia y la inductancia de la red de distribución (transformadores y líneas)
  6. Las medidas correctoras (filtros) deben instalarse lo más próximas posible a las cargas generadoras de los armónicos.

En resumen, la solución del problema de armónicos es una solución a dos bandas: Por un lado el usuario debe limitar la cantidad de corrientes armónicas que generan sus receptores y debe procurar distribuir dentro de su planta con baja impedancia por metro de línea. Por otro lado la compañía distribuidora debe garantizar un mínimo de potencia de cortocircuito y debe velar para que los usuarios no superen ciertos límites de distorsión, para que no perjudiquen a sus vecinos que comparten con ellos la red.

Cuando los niveles de armónicos generados por algunos receptores no son admisibles para el sistema de distribución que los alimenta deben aplicarse filtros de corrección. En este artículo vamos a centrarnos y desarrollar el tema de filtrado.

Límites de compatibilidad por armónicos

La presencia de armónicos en la red tiene varias consecuencias. Las más importantes son las siguientes.

  1. Deterioro de la calidad de la onda de tensión, afectando a algunos receptores sensibles.
  2. Sobrecarga y posible resonancia paralelo entre la inductancia de línea y los condensadores de compensación de factor de potencia (FP)
  3. Empeoramiento de factor de potencia. La capacidad de la red para suministrar potencia se ve disminuida por ello, obligando a su sobredimensionamiento.
  4. Sobrecarga de cables y sobre todo de transformadores (aumento muy significativo de las pérdidas en el hierro)
  5. Problemas de disparo intempestivo de protecciones

Para evitar estos fenómenos, las normas establecen un mínimo de calidad de suministro, que se fija limitando los niveles máximos de distorsión en la onda de tensión suministrada en el punto de acoplo a la red pública (PCC). Estos límites se denominan límites de compatibilidad. La tabla 1 ofrece un resumen de dichos límites, por lo que se refiere a armónicos en redes industriales de BT. Las distintas clases mencionadas en dicha tabla corresponden a:

  • Clase 1: Entorno industrial previsto para alimentación de equipos electrónicos sensibles
  • Clase 2: Entorno industrial normal. Límites habituales para redes públicas
  • Clase 3: Entorno industrial degradado (generalmente por la presencia de convertidores). No apto para alimentación de equipos sensibles.

Tabla 2.- Límites de compatibilidad: Armónicos de tensión (Un%) en redes industriales de BT (IEC-61000-2-4)

Orden del armónico
h

Clase 1
Un% 

Clase 2
Un% 

Clase 3
Un% 

2 2 3
3 5 6
4 1 1,5
5 3 6 8
6 0,5 0,5 1
7 3 5 7
8 0,5 0,5 1
9 1,5 1,5 2,5
10 0,5 0,5 1
>10 mult. de 2 0,2 0,2 1
11 3 3,5 5
13 3 3 4,5
15 0,3 0,3 2
17 2 2 4
19 1,5 1,5 4
21 0,2 0,2 1,75
>21 mult de 3 0,2 0,2 1
23 1,5 1,5 3,5
25 1,5 1,5 3,5
>25 no mult de 2 ni 3 0,2+12,5/h 0,2+12,5/h 5x√11/h
       
THD(V) 5% 8% 10%

Los armónicos de tensión se deben a la caída de tensión que producen los armónicos de corriente sobre las impedancias de la red de distribución. Este hecho se ilustra en la fig. 2. Así pues, el alcanzar estos límites depende de dos factores:

  1. Nivel de emisión de los receptores: A mayor emisión , mayor distorsión debida a la caída de tensión producida por las corrientes armónicas en la red
  2. Impedancia de la red: A mayor impedancia, mayor caída de tensión para el mismo valor de emisión en los receptores

La tabla 3 da los valores límites de emisión en redes de baja tensión, fijados por la norma EN-IEC-61000-3-4 para acometidas en las que la potencia instalada en elementos perturbadores no supere el valor (33xScc), donde Scc es la potencia de cortocircuito que corresponda a esta acometida (Parte proporcional de la potencia de cortocircuito total que corresponda a la potencia contratada).

FA-fig2

Fig.2  Esquema unifilar mostrando el deterioro de la onda de tensión debido a cargas no lineales

Tabla 3.- Límites de emisión para Sequipo< 33x Scc (EN-IEC-61000-3-4)

Armónico h Corriente admisible
In/I1%
Armónico h  Corriente admisible
In/I1%
 21,6 21 ≤ 0,6
10,7  23  0,9
7,2  25  0,8
9 3,8 27 ≤ 0,6
11 3,1 29 0,7
13 2 31 0,7
15 0,7 ≤ 33 ≤ 0,6
17 1,2    
19 1,1 Pares ≤ 8/n ó 0,6

¿En qué instalaciones se necesitan los filtros activos?

Algunos de los problemas de perturbaciones que hemos indicado anteriormente pueden ser mitigados y corregidos mediante filtros. Los filtros activos son la solución ideal para instalaciones con gran cantidad de cargas monofásicas y trifásicas, que sean generadoras de armónicos y con diferentes regímenes de consumo.

Los filtros activos son equipos basados en convertidores con modulación de ancho de pulso PWM. Pueden distinguirse dos tipos: Filtros serie y filtros paralelo. Habitualmente para cumplir con las normas IEC-61000-3.4 y IEEE-519 se emplean filtros paralelo, cuyo principio de funcionamiento consiste en la inyección a la red, en contrafase, de los armónicos consumidos por la carga, mediante un ondulador. La fig. 9 ilustra este principio de funcionamiento mostrando las corrientes de carga, de filtro y de red. Se ve que de la suma de ICARGA + IFILTRO se obtiene una corriente IRED que es senoidal. La fig. 10 muestra un filtro activo paralelo y su esquema de principio.

FA-fig9

Fig. 9.- Principio de funcionamiento de un filtro activo paralelo.

La evolución hacia equipos completos para garantizar la durabilidad

Los equipos de filtrado han ido incorporando funciones complementarias para adaptarse a las modificaciones en las instalaciones, ya sean ampliaciones o cambios de las máquinas que puedan precisar más filtrado de determinados armónicos o un equilibrado entre fases. Suele ser también útil disponer de una compensación de energía reactiva en estos equipos. 

FA-fig10

Fig. 10.- Gracias a las comunicaciones los filtros activos AFQ ayudan a mejorar la gestión energética

FA-fig11

Fig. 11.- Los filtros activos AFQ permiten priorizar las funciones de que disponen aportando mayor flexibilidad

Por ello los filtros activos AFQ de CIRCUTOR incorporan:

  • Multirango en tensiones de funcionamiento, de 400, 440 y 480V, y multifrecuencia (50/60 Hz). 230, 280V bajo pedido.
  • Comunicaciones para una mejor gestión energética de la instalación (Fig. 10).
  • Conexionado en el lado de red o de la carga para una mayor flexibilidad de instalación.
  • Ajuste de prioridad para filtrar armónicos, compensar reactiva y equilibrar fases (Fig. 11).
  • Filtrado selectivo de determinados armónicos.

La importancia de una buena instalación

Para conseguir los mejores resultados, conviene disponer de unos filtros como los AFQ que se instalan y gestionan de forma sencilla. Las funciones que más facilitan la puesta en marcha son:

  • Puesta en marcha en 3 pasos: conectar, configurar, arrancar.
  • Display táctil para una rápida gestión (Fig. 12).
  • Alarmas como error de configuración, polaridad, temperaturas, resonancia, tensiones, sobrecarga, contactores, bus de continua, etc.

FA-fig12

Fig. 12.- La facilidad de interacción y la puesta en marcha intuitiva facilitan la instalación de los filtros activos AFQ

Conclusiones

La presencia de armónicos en las redes de distribución es cada vez mayor, causando una serie de problemas de deterioro de la calidad de la onda de tensión, haciendo necesario un sobredimensionamiento de las instalaciones y ocasionando pérdidas adicionales significativas. Al margen de que existen normas que limitan el consumo de dichos armónicos, resulta conveniente el filtrado de dichos armónicos, pues permite optimizar las secciones de cable, las potencias de los transformadores de distribución y reducir las pérdidas en las instalaciones y evitar pérdidas de producción.

La solución del problema pasa por un diseño global y racional de filtros de armónicos, como los filtros activos, lo cual permite solucionar el problema con unos costes razonables y fácilmente amortizables por el ahorro en pérdidas, mejora de la vida de algunos componentes de las instalaciones y optimización de la infraestructura de distribución (cables canalizaciones, transformadores, etc.)


Contacte con nosotros:
t. 93 745 29 00
 

circutor32x32

Contacto

CIRCUTOR, SA
Vial Sant Jordi s/n, 08232
Viladecavalls (Barcelona) Spain
Tel: (+34) 93 745 29 00
Fax (+34) 93 745 29 14

Servicio de Asistencia Técnica

(+34) 93 745 29 19

SAT

© 2015 circutor.com. Todos los derechos reservados